【摘要】为明晰无信号交叉口网联车辆协同碰撞预警研究的局限性及发展方向,系统梳理了协作式交叉口碰撞预警(CICW)的研究进展。首先,分类梳理了现有交叉口行车冲突检测方法的优势与不足;其次,总结了不同预警级别、机制和模式的适用性;再次,归纳了CICW有效性及安全性评价指标,对比了仿真、实车以及虚实融合测试的技术特征;然后,分析了驾驶人不确定性与通信不可靠对CICW的影响及优化思路;最后,对CICW的发
【摘要】为了进一步提高自动驾驶汽车在交叉路口行驶时的燃油经济性,基于模型预测控制(MPC)理论,量化分析了车辆安全性、经济性、舒适性等多性能指标函数及约束,并设计了以经济性为主的交叉路口自动驾驶汽车生态驾驶控制器。仿真结果表明,所提出的控制策略能够保证良好的安全性和舒适性,与LQR控制器相比,在有前车影响和无前车影响工况下的百公里油耗分别降低15.83%和34.98%。 主题词:交叉路口 生态驾
【摘要】针对目前轨迹预测研究中交互建模方法使用的图注意力网络(GAT)为静态注意力,无法有效捕捉复杂道路场景中车辆间交互的问题,提出了一种基于编码器-解码器架构的动态图注意力网络(ED-DGAT)预测高速公路环境中运动车辆的未来轨迹。编码模块使用动态图注意力机制学习场景中车辆间的空间交互,采用状态简化动态图注意力网络建模解码阶段车辆运动的相互依赖,最后使用NGSIM数据集评估所提出的模型,并与长短
【摘要】为了改善传统快速搜索随机树(RRT)算法在全局路径规划中存在的平滑度差、具有潜在碰撞性等问题,提出了一种双重优化的RRT算法。在传统RRT算法基础上,引入自适应目标偏向策略以缩短采样时间,引入角度约束采样策略以适应车辆极限转角。得到初始路径后,建立二项优化函数(即降低路径曲率和远离障碍物),并将其作为基点进行梯度下降二次优化,生成可供车辆行驶、平滑性良好且碰撞概率低的路径,并进行仿真验证。
【摘要】针对单一控制算法无法同时满足无人驾驶车辆对路径跟踪精度和控制器求解速度需求的问题,提出一种基于线性二次型调节器(LQR)和模型预测控制(MPC)的混合控制策略。该策略在低速工况下使用线性二次型调节器、在高速工况下使用模型预测控制算法进行路径跟踪控制,在此基础上设计基于有限状态机(FSM)的控制算法切换机制,并通过遗传算法(GA)对控制参数进行优化,基于CarSim和MATLAB/Simul
【摘要】针对线性二次型调节器(LQR)在智能汽车横向控制中,系数矩阵Q和R选取困难导致的控制精度低和参数整定效率低的问题,提出了一种遗传粒子混合优化(GA-PSO)方法。基于车辆二自由度模型设计了横向LQR控制器和前馈控制器,以该模型下控制器自身能量损失函数作为代价函数对系数矩阵进行优化,并对比了GA-PSO和粒子群优化(PSO)算法的优化效果。CarSim/Simulink联合仿真结果表明,经G
【摘要】基于某省载货汽车历史行驶数据,提出了一种基于卷积神经网络-长短期记忆(CNN-LSTM)网络与自注意力机制的危险驾驶行为预测方法。针对载货汽车行驶数据量大、维度高、特征提取难度大、时序性强的特点,首先运用XGBoost对特征进行筛选,接着利用卷积神经网络(CNN)进行空间特征提取,再运用长短期记忆(LSTM)网络捕捉驾驶行为的时序信息,最后通过自注意力机制对危险驾驶行为进行预测。试验结果表